Estimation of 3-D peak L5/S1 joint moment during asymmetric lifting tasks with cubic spline interpolation of segment Euler angles.
نویسندگان
چکیده
Previous research proposed a method using interpolation of the joint angles in key frames extracted from a field-survey video to estimate the dynamic L5/S1 joint loading for symmetric lifting tasks. The advantage of this method is that there is no need to use unwieldy equipment for capturing full body movement for the lifting tasks. The current research extends this method to asymmetric lifting tasks. The results indicate that 4-point cubic spline interpolation of segment Euler angles combined with a biomechanical model can provide a good estimation of 3-D peak L5/S1 joint moments for asymmetric lifting tasks. The average absolute error in the coronal, sagittal, and transverse planes with respect to the local pelvis axes was 16Nm, 22Nm, and 11Nm, respectively. It was also found that the dynamic component of the peak L5/S1 joint moment was not monotonously convergent when the number of interpolation points was increased. These results can be helpful for developing applied ergonomic field-survey tools such as video bases systems for estimating L5/S1 moments of manual materials handling tasks.
منابع مشابه
Assessing manual lifting tasks based on segment angle interpolations.
This study investigates the effects of the number of interpolation points on the prediction accuracy of segment angle trajectory during lifting. Ten participants performed various lifting tasks while a motion tracking system recorded their movements. Two-point through ten-point equal time-spaced segment angles extracted from major segment trajectory data captured by the motion tracking system w...
متن کاملDetermination of joint moments with instrumented force shoes in a variety of tasks.
Ground reaction forces (GRFs) are often used in inverse dynamics analyses to determine joint loading. These GRFs are usually measured using force plates (FPs). As an alternative, instrumented force shoes (FSs) can be used, which have the advantage over FPs that they do not constrain foot placement. This study tested the FS system in one normal weight subject (77kg) performing 19 different lifti...
متن کاملIn vivo lumbo-sacral forces and moments during constant speed running at different stride lengths.
The aim of this study was to introduce a Newton-Euler inverse dynamics model that included reaction force and moment estimation at the lumbo-sacral (L5-S1) and thoraco-lumbar (T12-L1) joints. Data were collected while participants ran over ground at 3.8 m x s(-1) at three different stride lengths: preferred stride length, 20% greater than preferred, and 20% less than preferred. Inputs to the mo...
متن کاملThe Validity and Interrater Reliability of Video-Based Posture Observation During Asymmetric Lifting Tasks
OBJECTIVE The objective was to evaluate the validity and interrater reliability of a video-based posture observation method for the major body segment angles during asymmetric lifting tasks. BACKGROUND Observational methods have been widely used as an awkward-posture assessment tool for ergonomics studies. Previous research proposed a video-based posture observation method with estimation of ...
متن کاملBottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors.
L5/S1, hip and knee moments during manual lifting tasks are, in a laboratory environment, frequently established by bottom-up inverse dynamics, using force plates to measure ground reaction forces (GRFs) and an optoelectronic system to measure segment positions and orientations. For field measurements, alternative measurement systems are being developed. One alternative is the use of small body...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied ergonomics
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2012